

DEPARTMENT OF PHYSICS

(SELF FINANCING)

BACHELOR OF PHYSICS

COURSE PLAN

2020-2021

EVEN SEMESTER

HOD : Prof. V P Anto

Course Plan 2020-2021

SEMESTER -6

PH6 B10: THERMAL AND STATISTICAL PHYSICS

Lecture Hours 72 hrs, Credits: 4

Internal: 20, External: 80, Examination 3 Hours

Objectives

Understand the theoretical basis of thermodynamics and statistical physics

Unit- I

Module I

Thermodynamic system- Thermal equilibrium-zeroth law-concept of heat and temperaturethermodynamic equilibrium- quasistatic process -extensive and intensive variables- thermodynamic process (cyclic and non cyclic)-indicator diagram- work done in isothermal, adiabatic, isobaric and isochoric –cyclic processes- concept of path and point functions-internal energy- first law of thermodynamics-relation between P,T,V ,in adiabatic process-slope of adiabatic and isothermal process -application of first law to heat capacities-(relation between Cp and Cv) and latent heat– adiabatic and isothermal elasticity of a gas) (18 hours , 32 marks)

Module II

Reversible and irreversible processes, Conditions for reversibility-second law of thermodynamicsheat engine, Carnot engine, derivation for expression for efficiency, efficiency, Carnot's refrigeratorthermodynamical scale of temperature- Carnot's theorem and its proof.- application of second law(Clausius-Clapyron equation)- internal combustion engine-otto engine, diesel engine -its efficiencies (11 Hours, 20 Marks)

Module III

Entropy and adiabatics- definition of entropy-Change of entropy in a Carnot cycle-Change of entropy in an reversible cycle (Claussius theorem) -Change of entropy in an irreversible cycle (Claussius inequality)- Change in entropy of a perfect gas during a process-Change in entropy in a irreversible process-change in entropy due to free expansion-Change in entropy due to spontaneous cooling by conduction, radiation....etc, - Principle of increase of entropy-Entropy and available energy-Entropy and disorder-Nernst heat theorem ,entropy temperature diagrams.

(14 Hours, 22 Marks)

Module IV

Thermodynamic functions-Enthalpy, Helmhlotz function, Gibbs function-Maxwell's thermodynamic relations-TdS relations-application of Maxwell's thermodynamical relations-1.variation of intrinsic energy with volume-2.Joule-Kelvin coefficient3.Claussius-Clapeyron equation from Maxwell's thermodynamic relations- changes of phase. properties – Standard normal curve.

(10 Hours, 15 Marks)

Unit II

Module V

Statistical distributions-Maxwell-Boltzmann statistics (no derivation)-Distribution of molecular energies in an ideal gas-Average molecular energy- Equi partition theorem, Maxwell-Boltzmann speed distribution law-Expressions for rms speed, most probable speed and mean speed

(8 Hours, 15 Marks)

Module VI

Bose Einstein and Fermi Dirac distribution laws (no derivations)- Application of BE distribution law to black body radiation-Planck's radiation law-Stefan's law-Wien's displacement law-Fermi energy-Expression for Fermi energy of electron system-electron energy distribution- average electron energy at absolute zero-Degeneracy pressure and its astrophysical significance.

(11 Hours, 22 Marks)

Reference Books:

- 1. Heat and Thermodynamics-DS Mathur (V Edn.)
- 2. Statistical Mechanics An Elementary Outline Avijit Lahiri Universities Press
- 3. Physics- Resnick and Halliday
- 4. Heat and Thermodynamics-Zemansky
- 5. Thermodynamics Y V C Rao Universities Press
- 6. Advanced Physics Second Edition Keith Gibbs Cambridge University Press
- 7. Thermodynamics and statistical mechanics-Brijlal Subramanium
- 8. Heat and Thermodynamics- A Manna

OBJECTIVES

- Understand the zero and first laws of thermodynamics
- Understand the thermodynamics description of the ideal gas
- Understand the second law of thermodynamics and its applications
- Understand the basic ideas of entropy
- Understand the concepts of thermodynamic potentials and phase transitions
- Understand the basic principles of statistical physics and its applications

Unit/ session/ hours (Time Required)	Topics for student preparation (input)	Procedure (process) Student centric Method of teaching	Activity	Learning outcome (output)	Assessme nt
Module 1	Definitions-Scope-	 Discussion 	• Peer Group	• To	Evaluatio
Introduction to	Law of	• Participative	Discussion on	understan	n Through
Thermodynamics	thermodynamics-	learning	Thermodynam	d the laws	MCQ
18 hours	Applications	• Problem	ic system and	of	
		solving	laws of	thermody	
			thermodynami	namics	
			CS		
Module-2	Reversible and	• Lecture	Group	• To understand	Quiz
Reversible and	irreversible processes	• Discussion	Discussion on	the Reversible	

LESSON PLAN

irreversible processes 11 Hours	, Conditions for reversibilityheat engine- efficiencies	 Problem solving Demonstrati ons of Heat engines. 	heat efficie	engine- encies	and irrevers processes	ible
Module-3 Entropy and its Change 14 Hours	definition of entropy- Change of entropy in different systems- Nernst heat theorem	 Lecture Discussion Problem solving seminar 	• Discu and s entrop chang differ syster	ussion urvey of py ge in ent ms	To Understand basic ideas entropy	theEvaluation ofthrough tests
Module-3 Thermodynami c functions 10 Hours	Thermodynamic functions- application of Maxwell's thermodynamical relations- Claussius- Clapeyron equation- changes of phase	 Lecture Problem solving Group study 	 Maxw thermo cal Devic constr 	vell's odynami relations ce ruction	Understand concepts thermodyna c potentials phase transitions	the Evaluation of Through mi MCQ and
Module 4 Statistical distributions 8 Hours	Statisticaldistributions-Maxwell-Boltzmannstatistics-Equipartitiontheorem-Maxwell-Boltzmannspeeddistribution law	 Problem solving Lecture Discussion Seminar 	 Expla of partiti- theore Stellar 	enation Equi on em r study	 Understand basic princip of statist mechanics Maxwell- Boltzmann statistics 	theviva ples ical and
Module 5 Quantum Statistics 11 Hours	Bose Einstein and Fermi Dirac statistics- -Fermi energy- Degeneracy pressure and its astrophysical significance.	 Problem solving Lecture Discussion 	 Practire realiz Black Expension verified 	ical ation of body rimental cation of	 Understand concepts Bose Eins and Fe Dirac 	the General of seminars tein Internal ermi Exam

		St	efans law	distribution	
		• T	abulation of	laws and fermi	
		Fe	ermi energy	energy	
		of	different		
		m	atels		

Course outcomes

CO1	Understand the zero and first laws of thermodynamics
CO2	Understand the thermodynamics description of the ideal gas
CO3	Understand the second law of thermodynamics and its applications
CO4	Understand the basic ideas of entropy.
CO5	Understand the concepts of thermodynamic potentials and phase transitions
CO6	Understand the basic principles of statistical physics and its applications

UNIT WISE BREAK UP

LECTURE HOURS: 54

OBJECTIVE

- a) Understand the theoretical basis of thermodynamic.
- b) Understand the basic principles of statistical physics and its applications

Module Number	Торіс	No. of Lecture Hours	Pre- class activity	Pedagogy (in class)	Out of class assignment
Module 1 :	Introduction to	18			To make short
	Thermodynamics				notes on the
Unit 1.	Thermodynamic	10			features,
	processes		Check the	Lecture and	scope

Unit 2.	First law of	8	knowledge in	Discussion	applications of
	thermodynamics		Thermodynamics		Thermodynamic
					s
Module 2	Second law of	11			
	thermodynamics				
Unit 1.	Second law	5	To learn about	Lecture and	Applications of
			reversible and	Illustrations	second law
			irreversible		
			process		
Unit 2.	Heat Engine	6	To learn the	Illustrations and	Comparison of
	C		working of	Working	different
			engines	6	engines
			8		8
Module 3	Entropy	14			
Unit 1	Entropy And Third	2	To understand	Lecture and	Set theory
	law of		entropy change	discussion	problems
	thermodynamics				Draw T -S Diagram
Module 4	Thermodynamic	10			
	functions				
Unit 1.	Maxwells	5	To realize the	Lecture .	problems
	Thermodynamic		Thermodynamic	discussion	1
	functions		functions	and working	
Unit 2.		5			
			To realize different	Illustrations	Applications of
	Phase change		Phase	Lecture	phase change
					F8-
Module 5	Statistical mechanics	8			
		-			

Unit 1	M- B statistics	8	To read about Probability	Lecture and Problem solving	To write the applications of M- B statistics
Module 6	Quantum Statistics	11			
Unit 1	B-E statistics	6	To read about bosons	Lecture and Problem solving	To write the applications of B-E statistics
Unit 2.	F- D statistics	5	To read about Fermions	Lecture and Problem solving	To write the applications of F-D statistics

Teacher in Charge : Jose Sunny

PH6 B11 : SOLID STATE PHYSICS, SPECTROSCOPY AND LASER PHYSICS Total Lecture Hours:72 ,Credits:4 Internal:20 ,External :80, Examination 3 hours

OBJECTIVES

To familiarize students with crystal physics, X-Ray diffraction as well as molecular spectroscopy.

UNIT -1 SOLID STATE PHYSICS

Module 1-Crystal Physics	15 hours	Max marks 27
Lattice Point & Space Lattice-Basis and crystal stru	cture, unit cells and lattice Parameters, Unit c	ells v/s primitive
cells, Crystal systems, crystal symmetry. The 23	symmetry elements in a cubical crystal, 1	otation axis and
inversion. Symmetry elements, Bravais space lattic	es-metallic crystal structure, sodium chlorid	le, diamond, zinc
sulphide, hexagonal and closed packed structure, di	rections, planes and Miller indices.	
(Section 4.1 to 4.8, 4.11 to 4.15 and 4.18 - Solid St	ate Physics by S.O. Pillai)	
Module 2 X-ray Diffraction	5 hours	Max marks 10
Bragg's law - Braggs X-ray spectrometer-Rotating	Crystal method	
Section 5.7 to 5.11- Solid State Physics by S.O. Pill	ai	
Module 3 Super conductivity	8 hours	Max marks 12
A survey of superconductivity-Mechanism of Super	conductors-Effects of Magnetic Field-Meissr	her Effect-isotope
Effect-Energy Gap -Coherence Length- Josephson	n effect-BCS Theory (Qualitative idea only)) -Application of
Superconductivity, Type I and Type II superconduct	tors.	
(Section 8.1 to 8.5 & 8.10 of Solid State Physics - S	.O. Pillai)	
UNIT-2 MOLECULAR SPECTROSCOPY		
Module 4 Basic Elements of Spectroscopy	5 hours	Max marks 10
Quantum of Energy-Regions of Spectrum-Represent	tation of Spectrum-Basic Elements of Practic	al Spectroscopy-
Signal to Noise Ratio-Resolving Power-Width &	& Intensity of Spectral Transitions (Section	on 1.2 to 1.8 of
Fundamentals of Molecular Spectroscopy by Banwo	ell & Elaine Mcash)	
Module 5 Microwave Spectroscopy	8 hours	Max marks 15
Classification of Molecules-Interaction of Radiat	ion with Rotating Molecules-Rotational Sp	ectrum of Rigid
Diatomic Molecule-Example of CO-Selection Rul	e-Intensity-Spectrum of non -rigid Rotator-	Example of HF-
Spectrum of symmetric Top molecule- Example	e of Methyl chloride-Information derived	from Rotational
Spectrum.		

(Section 6-Rotation of Molecules, Section 6.1 to 6.6, 6.9, 6.13, 6.14 of Molecular Structure & Spectroscopy by G Aruldhas & Chapter 2 - Fundamentals of Molecular Spectroscopy by Banwell & Elaine M Mccas Module 6. Infra Red Spectroscopy 9 hours Max marks 15 Vibrational Energy of an Anharmonic Oscillator-Diatomic Molecule (Morse Curve)-IR Spectra-Spectral Transitions & Selection Rules-Example of HCL-Vibration-Rotation Spectra of Diatomic Molecule-Born Oppenheimer Approximation-Instrmentation for Infra Red Spectroscopy (Section 7 to 7.5, 7.15, 7.16 of Molecular Structures & Spectroscopy by G Aruldhas & Chapter 3 of Fundamentals of Molecular Spectroscopy by Banwell & Elaine M Mccash) Module 7 Raman Spectroscopy 10 hours Max narks 15 Raman Effect, Elements of Quantum theory & Applications-Pure Rotational Raman Spectrum-Examples of Oxygen and carbon-dioxide-Rotational Raman spectrum of symmetric Top molecule-Example of chloroform. Vibrational Raman spectrum of Symmetric Top Molecule-Example of Chloroform. (Molecular Structures & Spectroscopy by G Aruldhas & Chapter 4 of Fundamentals of Molecular Spectroscopy by Banwell & Elaine M Mccash) **Module 8 Laser Physics** 12 hours Max marks 22 Induced Absorption-Spontaneous Emission & Stimulated Emission-Einstein Coefficients Principle of Laser-Population inversion-Pumping-Properties of Laser-Types of Laser- Principle & working of Ruby laser, Helium Neon Laser & Semiconductor Laser- -Yag Lasers (Qualitative ideas only). Application of Lasers (Chapter 12 Masers & Lasers, Solid State Physics by S.O. Pillai, Lasers – Theory & Applications by K Thyagarajan & Ajoy Ghatak)

References

- 1. Solid Sate Physics by M A Wahab
- 2. Introduction to Molecular Spectroscopy by G M Barrow
- 3. Raman Spectroscopy by Long D A
- 4. Modern Physics by R Murugeshan
- 5. Optical Communications M Mukunda Rao Universities Press
- 6. Principles of Condensed Matter Physics P M Chaikin & T C Lubensky Cambridge University Press

OBJECTIVES

- To familiarize students with basic aspects of crystal physics and X-Ray Diffraction
- To enable the students to get deeper view on molecular spectroscopy and photonics.

LESSON PLAN

Unit/ session/ hours (Time Required)	Topics for student preparation (input)	Procedure (process) Student centric Method of teaching	Activity	Learning outcome (output)	Assessme nt
Module 1	Definitions-Types of	 Discussion 	• Constructi	• To	Evaluatio
Crystal Physics	Symmetry elements-	• Lecture	on of	understan	n Through
15 hours	Packing Factor-Miller	• Participative	various	d the	MCQ and
	Indices	learning	crystal	basics of	Viva
		• Problem	structures	crystallog	
		solving		raphy	
Module-2	Braggs Law and	• Lecture	• Group	• To understand	Quiz
X-Ray	Derivation-X-Ray	• Discussion	Discussion on	the basic	
Diffraction	Photometer-	• Problem	different	principles of X-	
5 Hours	Rotating Crystal	solving	crystal	Ray	
	method	• Seminar	methods	Diffraction.	
		Presentation			
Module-3	Definitions-	• Lecture	• Paper	• To understand	Evaluation
Superconducti	Mechanism-	• Discussion	review	the basic	through
vity	Properties-Meissner	• Problem	discussions	elements of	tests
8 Hours	Effect-Isotope	solving	on latest	superconducti	

Course Plan 2020-2021

	effect-Josephson	•	seminar		innovation		vity.	
	effect-BCS Theory-				in the field			
	Applications							
Module-4	Definitions-	•	Lecture	•	Incorporating			Evaluation
Basic elements	Electromagnetic	•	Problem		videos on	•	Understand the	Through
of Spectrocopy	Spectrum-Grating		solving		practical		basic elements	MCQ
5 Hours	Spectrometer-	•	Group study		spectroscopy		of spectroscopy	
	Factors to consider-			•	Representatio			
	Intensity of Spectral				n of different			
	Lines				spectroscopie			
					s in flowchart			
Module 5	Classification of	•	Problem	•	Group	•	To Understand	viva
Microwave	molecules-		solving		Discussion		the basics ideas	
Spectroscopy	Evaluation of I-	•	Lecture				of microwave	
8 Hours	Isotope Effect-	•	Participative				spectroscopy	
	Nonrigid Rotator		Learning					
		•	Seminar					
Module 6	Definitions-Scope-	•	Problem	•	Practical	•	To Understand	General
Infrared	Harmonic Ocillator		solving		realization of		the basics ideas	seminars
Spectroscopy	model-Anharmonic	•	Lecture		Spectroscopy		of infra red	Internal
9 Hours	Oscillator model-	•	Discussion	•	Finding out		spectroscopy	Exam
	Selection Rules-				the			
	Diatomic vibrating				applications			
	rotator				of infrared			
					spectroscopy			
				•	Analyzing			
					recent			
					advancements			
					in the field			
		1						1

Module 7	Definitions-scopes-	• F	Problem	•	Finding more	٠	To Understand	٠	Viva
Raman	Classical and	S	solving		about Dr C V		the basics ideas		
Spectroscopy	Quantum Theory-	• I	Lecture		Raman		of infra red		
10 Hours	Rotational and	• I	Discussion	•	Understandin		spectroscopy		
	vibrational Raman	• F	Participative		g modern				
	spectrum	Ι	Learning		innovations in				
					the field				
Module 8	Definitions-types of	• •	Experiential	•	Practical	•	To understand	٠	Practi
Laser Physics	lasers-Applications	Ι	Learning		sessions to		various ideas of		cal
12 Hours		• I	Lecture		calculate the		photonics		Exam
		• F	Participative		wavelength of				
		Ι	Learning		Laser and its				
					properties				

Course outcomes

CO1	Understand the basic aspects of crystallography in solid state physics
cor	Understand the basic principles of V Pay Diffraction
	Understand the basic principles of X-Kay Diffraction.
CO3	Understand the basic elements of spectroscopy
CO4	Understand the basics ideas of microwave and infra red spectroscopy
CO5	Understand the fundamental ideas of photonics

UNIT WISE BREAK UP

LECTURE HOURS: 72

OBJECTIVE

- c) Understand the theoretical basis of crystallography
- d) Understand the basic principles of spectroscopy and photonics

Module Number	Торіс	No. of Lecture Hours	Pre- class activity	Pedagogy (in class)	Out of class assignment
Module 1 :	Crystal Physics	5			Construction of
Unit 1.	Crystals and crystal symmetry	2			various crystal elements

Unit 2.	Bravis space lattices,	3	Check the	Lecture and	
	Packing Factors and		knowledge in	Discussion	
	Miller indices		crystals and co-		
			ordinate systems		
Module 2	X-Ray Diffraction	5			
Unit 1.	Braggs Law	3	To check the	Lecture and	Solving problems
			basic knowledge	Illustrations	based on the
			on Braggs law		theory
Unit 2.	Rotating Crystal	2	To learn the	Illustrations and	Comparison of
	Method		different	discussion	different
			diffraction		methods of X-
			methods		Ray diffraction
Module 3	Super Conductivity	8			
Unit 1	Superconductivity,	4	To understand	Lecture and	Determining
	mechanism, Meissner		concept of	discussion	the properties
	Effect		superconductivit		and
			V		applications of
					superconductor
					S
Unit 2	Josephson Effect,	4	To understand	Illustrations	Comparison of
	BCS Theory, Types of		various	and lectures	types of
	Superconductors		phenomenas		superconductor
					S
Module 4	Basic elements of	5			
	Spectroscopy				
Unit 1.	Representation of	5	To realize various	Lecture ,	Flow chart of
	Spectrum, Basic		spectrum	discussion	spectral series
	elements of Practical		representations		in detail
	Spectroscopy				

Module 5	Microwave	8			
	Spectroscopy				
Unit 1	Classification of	4	To check the	Lecture and	To write the
	molecules,		knowledge about	Problem	applications of
	Rotational		different types of	solving	microwave
	spectroscopy of rigid		molecules		spectroscopy
	diatomic molecule				
Unit 2	Spectrum of non-	4	To understand	Lecture and	To find out
	rigid Rotator		bond structure of	Problem	different models
			molecules	solving	for analysing
					molecular
					spectroscopy
Module 6	Infra red	9			
	Spectroscopy				
Unit 1	Harmonic and	5	To read about	Lecture and	To solve the
	Anharmonic		harmonic	Problem	problems based
	oscillator model		oscillators	solving	on theory
Llait 2	Detetional and f	4	To 41-1 1	I a atraine 1	To
Unit 2.	Kotational spectra of	4	10 read about	Lecture and	10 write the
	diatomic molecule			Problem	applications of
			molecule and	solving	Infra rec
			rotational spectra		spectroscopy
Modulo 7	Raman	10			
	Spootroscopy	10			
TT 1. 4	Spectroscopy		T	T	
Unit I	Raman effect	5	To read about C	Lecture and	To make a write
	Votational Doman	1	V Domon and	Illusaturationa	l ma an Ala

	effect		Raman Effect		contributions pf
					C V Raman
Unit 2	Vibrational Raman	5	To read about	Lecture and	To solve the
	Spectrum		Vibration	Discussions	problems based
			changes in		on the theory
			molecules		
Module 8	Laser Physics	12			
Unit 1	Principle of Laser	7	To read about	Lecture and	To write on the
			laser and its	Illustrations	applications of
			properties		Lasers
Unit 2	Types of Laser	5	To understand	Lecture and	To make a
			different types of	Illustrations	comparative
			Lasers		study on lasing
					action of
					different lasers

Teacher in Charge : Merin Jose V

PH6 B13(E1) Elective- Computational Physics (54 hrs. - 3 credits) Internal: 20, External: 80, Examination 3 Hours

Objectives

Understand Python Programming and computational approach in physics

UNIT I

Introduction to Python Programming:

Concept of high level language, steps involved in the development of a Program – Compilers and Interpreters - Introduction to Python language, Advantages of Python in comparison with other Languages - Different methods of using python: Using python as a calculator, Writing python programs and execution - Inputs and Outputs - Variables, operators, expressions and statements -- Strings, Lists, list functions (len, append, insert, del, remove, reverse, sort, +, *, max, min, count, in, not in, sum), sets, set functions(set, add, remove, in, not in, union, intersection, symmetric difference)-Tuples and Dictionaries, Conditionals, Iteration and looping - Functions and Modules - File input and file output, Pickling.

UNIT II.

Numerical Methods in physics

(Programs are to be discussed in Python) General introduction to numerical methods, Comparison between analytical and numerical techniques - Curve Fitting: Principle of least squares, fitting a straight line - Interpolation: Finite difference operator, Newton's forward difference interpolation formula, Solution of algebraic equations: Newton-Raphson method -Numerical differentiation and integration: Difference table, Trapezoidal and Simpson's (1/3) method - Solution of differential equations :Runge Kutta method (Second order) -Taylor's Series : Sin(x) and Cos(x).

UNIT III.

Introduction to Computational approach in physics (Programs are to be discussed in Python) One Dimensional Motion: Falling Objects: Introduction - Formulation: from Analytical methods to Numerical Methods - Euler Method, Freely falling body, Fall of a body in viscous medium - Simulation of free fall and numerical integration, Two dimensional motion: Projectile motion (by Euler method)-Motion under an attractive 42 Inverse Square- law force Accuracy considerations .(elementary ideas)(Graphics not required, data may be

presented in table form)

References:

(For Python any book can be used as reference. Moreover a number of open articles are available freely in internet. Python

12 hours

Max marks 32

22 hours Max marks 47

Max marks 47

20 hours

is included in default in all GNU/Linux platforms and It is freely downloadable for Windows platform as well. However use of GNU/Linux may be encouraged).

1. www.python.org

- 2. Python Essential Reference, David M. Beazley, Pearson Education
- 3. Core Python Programming, Wesley J Chun, Pearson Education
- 4. Python Tutorial Release 2.6.1 by Guido van Rossum, Fred L. Drake, Jr., editor. This Tutorial can be obtained from website (<u>http://www.altaway.com/resources/python/tutorial.pdf</u>)

5. How to Think Like a Computer Scientist: Learning with Python, Allen Downey, Jeffrey Elkner, Chris Meyers, <u>http://www.greenteapress.com/thinkpython/thinkpython.pdf</u>

6. Numerical Methods in Engineering and Science, Dr. B S Grewal, Khanna Publishers, Newdelhi (or any other book)

7. Numerical methods for scientists and engineers, K. Sankara Rao, PHI

8. Introductory methods of numerical analysis, S.S.Shastry, (Prentice Hall of India, 1983)

9.Computational Physics, V.K.Mittal, R.C.Verma & S.C.Gupta-Published by Ane Books,4821,Pawana Bhawan,first floor,24 Ansari Road,Darya Ganj,New Delhi-110 002 (For theory part and algorithms. Programs must be discussed in Python)

OBJECTIVES

- Understand the Basics of Python programming
- Understand the applications of Python modules
- Understand the basic techniques of numerical analysis
- Understand and apply computational techniques to physical problems

LESSON PLAN

Unit/ session/ hours (time Required)	Topics for student preparation (input)	Procedure (process) Student centric Method of teaching	Activity	Learning outcome (output)	Assessme nt
Unit 1 Introduction to Python Programming (20 Hours) Unit 2 Numerical Methods in physics (20 Hours)	Concept of high-level language and Python Basics Numerical methods Euler method, RK method, least square fitting, Simpson's and Trapezoidal rule, Interpolation &Newton Raphson method	 -Discussion -Participative learning -Explain Python Language using software Lecture Discussion Problem solving numerically Solving problems by programs 	 Peer Group Discussion on High-Level Language Group Discussion on writing programs for each problem 	 To understan d basics of program ming To develop problem solving skill & also programming skill 	Evaluatio n Through MCQ & simple programs Problems & programs
Unit 3 Introduction to Computationa 1 approach in physics (12 Hours)	Problems in Physics and its solution, Corresponding programs	 Lecture Discussion Problem solving Writing programs 	• Writing programs with different conditions	To Understand the program developing for solving a problem	Evaluation through tests– writing and checking outputs of the programs

Course Plan 2020-2021

Course Outcomes

CO1	Understand the Basics of Python Programming
CO2	Understand the applications of Python Modules
CO3	Understand the basic techniques of numerical analysis
CO4	Understand and apply computational techniques to physical problems

UNIT WISE BREAK UP

LECTURE HOURS: 54

OBJECTIVE

- e) Understand the basis of Programming language
- f) Developing program writing skills

Module Number	Торіс	No. of Lecture Hours	Pre- class activity	Pedagogy (in class)	Out of class assignment
Unit 1 :	Introduction to Python	5			To make short
	Programming:				notes on the
Section 1	Data Types	5			topics &writing
	&Variables		Check the	Lecture and	simple programs
Section 2	Iterating Loops	10	knowledge ir	Discussion	
	&conditionals		programming		
			language		
Unit 2	Numerical Methods	10			
Section 1	Programming	10	To learn about	Lecture and	Developing
			numerical	Illustrations	programs
			methods and	of programs	
			programming		
Unit 3	Computational	10	Developing	Theory &	Writing programs
	approach in physics		programs for	Illustration of	related to problems
			problems in physics	programs	in physics

Teacher in Charge : Raichal P John

SEMESTER 4

PHY4B04: ELECTRODYNAMICS II,54 hours (Credit - 3) Internal: 15, External: 60, Examination 2hrs

Objectives

Understand the theoretical basis of thermodynamics and statistical physics

Unit- I

ELECTRODYNAMICS

Electromotive force – Ohm's law, electromotive force, motional emf – Electromagnetic induction -Faradays law, induced electric field, inductance, energy in magnetic fields - Maxwell's equations -Electrodynamics before Maxwell, Maxwell's modification of Ampere's law, Maxwell's equations, Magnetic charge, Maxwell's equations inside matter, Boundary conditions – Continuity equation – Poynting's theorem [Sections 7.1 to 7.3 and 8.1 of Introduction to Electrodynamics by David J Griffiths. Additional problems should be done from chapter 7 of Berkeley Physics Course: Vol.2: Electricity and Magnetism (2nd Edn.) by Edward M Purcell.1

Unit- II

ELECTROMAGNETIC WAVES

Waves in one dimension, The wave equation, sinusoidal waves, boundary conditions :reflection and transmission, Polarization – Electromagnetic waves in vacuum, Wave equation for E and B, monochromatic plane waves in vacuum, energy and momentum of E.M. waves, Poynting vector -Electromagnetic waves in matter, Propagation through linear media, reflection and transmission at normal incidence .Potential formulation - Scalar and vector potentials, Gauge transformations, Coulomb gauge and Lorentz gauge. [Sections 9.1 to 9.3.2 and 10.1 of Introduction to Electrodynamics by David J Griffiths. Additional problems should be done from chapter 9 of Berkeley Physics Course: Vol.2: Electricity and Magnetism (2nd Edn.) by Edward M Purcell.]

Unit III

TRANSIENT CURRENTS

Types of transients – DC transient currents in R-L circuits – Short circuit current – Time constant –DC transient currents in R-C circuits - Double energy transients - Theory of BG [Sections 22.1, 22.2, 22.4, 22.5, 22.6, 22.8, 22.10 and 10.52 of Electrical Technology Vol. 1 by B.L. Theraja and A. K. Theraja]

Unit IV

AC CIRCUITS

A resonant circuit – Alternating current – Alternating current networks – Admittance and impedance – Power and energy in AC circuits

22 marks

2 marks

8 Hours

8 Hour

12 marks

15 Hours

15 Hrs

12 marks

11 marks

[Sections 8.1 to 8.5of Berkeley Physics Course: Vol.2: Electricity and Magnetism (2nd Edn.) by Edward M Purcell.Additional problems should be done from the relevant sections from chapters and 14 of the book of Electrical Technology Vol. 1 by B. L. Theraja and A. K. Theraja]

Unit V

NETWORK THEOREMS

Kirchhoff's laws, Voltage sign and current direction, Solution of simultaneous equations using determinants, Source conversion, Superposition theorem, Ideal equivalent circuits, Thevenin's theorem, Reciprocity theorem, Delta / Star transformation – Star / Delta transformation – Norton's theorem, Maximum power transfer theorem. [Sections 2.2 to 2.6, 2.14 to2.23, 2.25, 2.26, 2.27 and 2.30 from Electrical Technology Vol. 1 by B L. Theraja and A. K. Theraja]

8 Hours

Books of Study:

1. Introduction to Electrodynamics, 4thEdn. – David J Griffiths – Prentice Hall India Learning Pvt. Ltd

- 2. Berkeley Physics Course: Vol.2: Electricity and Magnetism, 2nd Edn. Edward M. Purcell McGraw-Hill
- 3. A Text Book of Electrical Technology Vol. 1 B. L. Theraja, A. K. Theraja S. Chand Publishers, 1997

Reference Books :

- 1. Electricity and magnetism by Arthur F Kip
- 2. Physics Vol. II by Resnick and Halliday
- 3. Electricity and Magnetism by D.N Vasudeva (12threvised edition)
- 4. Introductory AC Circuit theory K Mann & G J Russell- Universities Press
- 5. NPTEL video lectures available online

OBJECTIVES

- Understand the basic concepts of electrodynamics
- Understand and analyze the properties of electromagnetic waves
- Understand the behavior of transient currents
- Understand the basic aspects of ac circuits
- Understand and apply electrical network theorems

	LESSON PLAN									
Unit/ session/ hours (time Required)	Topics for student preparation (input)	Procedure (process) Student centric Method of teaching	Activity	Learning outcome (output)	Assessme nt					
Unit 1 Electrodynamics 15 hours Unit-2 Electromagnetic waves 15 Hours	Ohm's law, Faraday's law, Maxwell's equations, Ampere's law, Boundary conditions Waves in one dimension, boundary conditions, reflections and transmission, polarization, pointing vector, electromagnetic waves in matter gauge transformations	 Discussion Participative learning Problem solving Lecture Discussion Problem solving Seminar Class tests 	 Peer Group Discussion on boundary conditions Group Discussion on pointing vector and potential formulation 	 To understan d basic electrody namics To understand electromagnetic wave propagation in both vacuum and matter 	Evaluatio n Through descriptiv e problems Quiz Problems Test papers					
Unit -3 Transient currents 8 Hours	Types of transients- Transient currents in R-L circuits-Double energy transients- Theory of BG	 Lecture Discussion Problem solving Seminar 	 Group discussion on seminars 	• To learn about growth and decay of current in different circuits	Evaluation through tests					
Unit-4 AC Circuits 8 Hours	A resonant circuit- Alternating current- Alternating current networks-Power and energy in AC circuits	 Lecture Problem solving Group study 	• Peer activity learning by reviewing journals	• To understand the basic aspects of ac circuits	Evaluation Through MCQ					
Unit 5 Network Theorems 8 Hours	Kirchoff's laws- Solution of equations using determinants- Thevenin theorem- Norton's theorem- Maximum power	 Lecture Discussion Experiential Learning Seminar 	 Practical verification of different laws in lab 	• Understand and apply electrical network theorems	Experiment ally verifying Thevenin theorem					

	transfer theorem			
L	L	 	I	II

Course outcomes

CO1	Understand the basic concepts of electrodynamics
CO2	Understand and analyze the properties of electromagnetic waves
CO3	Understand the behavior of transient currents
CO4	Understand the basic aspects of ac circuits
CO5	Understand and apply electrical network theorems

UNIT WISE BREAK UP

LECTURE HOURS: 54

OBJECTIVE

- g) Understand the concepts of electrodynamics and electromagnetic waves.
- h) Understand the basic principles circuit theory and transient currents

Module Number	Торіс	No. of Lecture Hours	Pre- class activity	Pedagogy (in class)	Out of class assignment
Unit 1:	Electrodynamics	15			To make short
Section 1.	Ohm's law, Faraday's law, Ampere's law	4			notes on the topics and
Section 2.	Maxwell's equations & boundary conditions	8	Check the knowledge in electrodynamics (I)	Lecture and Discussion	topics and problems

	Section 3	Continuity equation and pointing theorem	3			
_	Unit 2	Electromagnetic	15			
-	Section 1.	Wave equation, boundary conditions: reflection and transmission	5	Learn about electromagnetic waves	Lecture and Illustrations	Problems
	Section 2.	Electromagnetic waves in matter	10	Learn About em waves in matter	Lecture and discussion	problems
ľ	Unit 3	Transient circuits	8			
	Section 1	Types of transients and BG		Learn about transient currents	Lecture and illustrations	Problem soving
	Unit 4	AC Circuits	8			
	Section 1.	Alternating current networks	6	Learn about AC networks	Lecture and illustrations	Solving various circuit diagrams
	Section 2.	Power and energy in AC circuits	2	Learn about power and energy	Lecture and illustrations	Calculating power and energy of various circuit diagrams
Ţ	Unit 5	Network Analysis	8			
	Section 1	Kirchoff's Laws- Solution using determinants- superposition theorem	4	Learn about various laws in network analysis	Lecture and illustrations	Solving problems
	Section 2	Thevenin theorem- Reciprocity theorem- Nortons Theorem	4	Learn about various laws in network analysis	Lecture and illustrations	Practical verification of Thevenin Theorem

Teachers in Charge : Merin Jose V & Raichal P John

SEMESTER 2

PHY2 B02: MECHANICS II Lecture Hours 36 hrs, Credits: 2 Internal: 15, External: 60, Examination 2 Hours

OBJECTIVES

Understand the fundamentals of mechanics

UNIT I

Non inertial Systems and Fictitious Forces8 Hours18 marksGalilean transformations – Uniformly accelerating systems – The apparent force of gravity –Pendulum in an
accelerating car – The principle of equivalence – The driving force of the tides – Physics in a rotating coordinate
system – Time derivatives and rotating coordinates – Acceleration relative to rotating coordinates – The apparent
force in a rotating coordinate system – The Coriolis force – Deflection of a falling mass – Motion on the rotating
earth – Weather systems – Foucault's pendulum[Sections 8.1 to 8.5 of An Introduction to Mechanics (1stEdn.) by Daniel Kleppner and Robert J.Kolenkow]

UNIT II

Central Force Motion

Central force motion as a one-body problem – General properties of central force motion – Motion confined to a plane – Energy and angular momentum as constants of the motion – The law of equal areas – Finding the motion in real problems – The energy equation and energy diagrams – Noninteracting particles – Planetary motion – Hyperbolic orbits – Satellite orbit – Kepler's laws –The law of periods – Properties of the ellipse [Sections 9.1 to 9.7 of An Introduction to Mechanics (1stEdn.) by Daniel Kleppner and Robert J.Kolenkow]

UNIT III

Harmonic Oscillator

Introduction and review – Standard form of the solution – Nomenclature – Initial conditions and the frictionless harmonic oscillator – Energy considerations – Time average values – Average energy – Damped harmonic oscillator – Energy and Q-factor – Q factor of two simple oscillators – Graphical analysis of a damped oscillator – Solution of the equation of motion for the damped oscillator – Forced harmonic oscillator – Undamped forced oscillator – Resonance

[Sections 10.1 to 10.3 of An Introduction to Mechanics (1stEdn.) by Daniel Kleppner and Robert J.Kolenkow]

Page 30

(10 Hours; 22 marks)

(8 Hours; 18 marks)

UNIT IV

Waves

(10 Hours; 21 marks)

What is a wave? Normal modes and travelling waves- Progressive waves in one direction- Wave speeds in specific media- Superposition -Wave pulses- Motion of wave pulse of constant shape-Superposition of wave pulses-Dispersion; Phase and Group velocities-Energy in a mechanical wave -Transport of energy by a wave-Momentum flow and mechanical radiation pressure-Waves I two and three dimension [Chapter 7 progressive waves(except the topic , The phenomenon of cut off) of vibrations and waves by A P French]

Books of Study:

- 1. An introduction to Mechanic, Ist Edn. Daniel Klepper & Robert j Kolenkow McGraw Hill
- 2. Vibrations &Waves A. P French The MIT Introductory Physics Series CBS Publishers &Distributors

Reference Books:

Berkeley Physics Course : Vol.1 : Mechanics, 2ndEdn. – Kittel et al. – McGraw-Hill

OBJECTIVE

- Understand the features of non-inertial systems and fictitious forces
- Understand and analyze the features of central forces with respect to planetary motion
- Understand the basics ideas of harmonic oscillations
- Understand and analyze the basic concepts of wave motion

LESSON PLAN						
Unit/ session/ hours (time Required)	Topics for student preparation (input)	Procedure (process) Student centric Method of teaching	Activity	Learning outcome (output)	Assessme nt	
Unit 1 Noninertial Systems and Fictitious Forces 8 hours	Non-inertial systems, fictitious forces, rotating coordinate systems, Coriolis forces, motion of rotating earth, Foucault's pendulum.	DiscussionProblems	 Peer Group Discussion on coordinate system, Coriolis force, Foucault's Pendulum 	• To understan d basic mechanic s	Evaluatio n Through MCQ and problems	
Unit-2 Central Force Motion 10 Hours	Central force problem, Energy & angular momentum, energy diagrams, planetary motion, Kepler's laws	 Lecture Discussion Problem solving 	Group Discussion on finding motion in real problems	• To understand Central force &planetary motion	Quiz and problems	
UNIT III Harmonic Oscillator 8 Hours	Harmonic oscillator- Standard form of solution, energy considerations, time average values, damped harmonic oscillator, graphical analysis, equation of motion for undriven damped oscillator, forced harmonic oscillator, Resonance	 Lecture Discussion Problem solving Seminar Assignment 	 Resonance Different types harmonic oscillation 	To Understand the harmonic oscillation motion possessed by different systems	Evaluation through tests Descriptive problems	
UNIT IV Waves 10 Hours	Waves, dispersion, Superposition, wave pulses, phase and group velocities, energy of waves, Waves in two and three dimensions	 Lecture Problem solving Group study 	• Waves in two& three dimensions	• Understand basic concept of wave motion	Evaluation Through MCQ	

Course outcomes

CO1	Understand the features of non-inertial systems and fictitious forces
CO2	Understand and analyze the features of central forces with respect to planetary forces
CO3	Understand the basic ideas of Harmonic oscillator
CO4	Understand the basic concepts of wave motion

UNIT WISE BREAK UP

LECTURE HOURS: 36

Г

OBJECTIVE

Understand Basic mechanics

Module Number	Торіс	No. of Lecture Hours	Pre- class activity	Pedagogy (in class)	Out of class assignment
UNIT 1:	Non inertial systems and fictitious forces	8		Lecture and Discussion	-To make short notes on the discussed topics - Extra problems as assignment
Section 1.	Rotating coordinate systems	5	Check the		
Section 2.	Coriolis force and Foucault's pendulum	3	knowledge in Newtonian Mechanics		
UNIT 2	Central Force Motion	10	Give problems	Lecture and	Problems
Section 1.	Finding motion in real problems	8	based on this topic	Illustration	
Section 2.	Kepler's laws	2	Discuss Planetary motion	Lecture and discussion	Problems

	Harmonic Oscillator	8	Basic ideas of	Lecture and	Problems
UNIT 3			oscillatory motion	discussion	
Section 1	Energy considerations	2	To understand	Lecture and	problems
Section 2	Different types of oscillatory motion	6	Energy diagrams	discussion	-
UNIT 4	Waves	10			
Section 1.	Superposition, wave	3	Basic ideas of	Lecture,	Problems
	pulses		waves	discussion of	Assignment on
				problems	notes
				Seminar	
Section 2.		5			
	Energy of mechanical		Waves in one	Illustrations	Problems
	wave-momentum		dimension	Lecture	
	flow, waves in 2D				
	and 3D				

Teacher in Charge : Raichal P John